首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6142篇
  免费   1446篇
  国内免费   1442篇
测绘学   146篇
大气科学   3273篇
地球物理   1148篇
地质学   1650篇
海洋学   442篇
天文学   165篇
综合类   261篇
自然地理   1945篇
  2024年   18篇
  2023年   87篇
  2022年   219篇
  2021年   321篇
  2020年   309篇
  2019年   322篇
  2018年   301篇
  2017年   328篇
  2016年   344篇
  2015年   362篇
  2014年   452篇
  2013年   820篇
  2012年   438篇
  2011年   408篇
  2010年   390篇
  2009年   468篇
  2008年   477篇
  2007年   442篇
  2006年   375篇
  2005年   336篇
  2004年   285篇
  2003年   263篇
  2002年   228篇
  2001年   178篇
  2000年   159篇
  1999年   127篇
  1998年   124篇
  1997年   112篇
  1996年   81篇
  1995年   67篇
  1994年   49篇
  1993年   33篇
  1992年   32篇
  1991年   18篇
  1990年   16篇
  1989年   7篇
  1988年   12篇
  1987年   5篇
  1986年   9篇
  1985年   4篇
  1984年   1篇
  1983年   3篇
排序方式: 共有9030条查询结果,搜索用时 406 毫秒
51.
宜人气候可以分为避暑型和避寒型两种类型,但现有研究鲜有关注国内两类气候的分布特征及差异。本文采用1981—2010年2132个国家气象观测站数据,基于温湿指数、风寒指数和着衣指数计算各个气象站点的气候综合舒适指数,结合协同克里金空间插值方法对全国避暑型和避寒型宜人气候的分布特征进行了研究,并对两类气候的地域差异进行了分析。结果表明:① 中国避暑型气候区包括40°N以北的西北边疆和东北地区、西北中部地区及西南地区三大集中分布区。中国避寒型气候区集中分布在北回归线以南的低纬地区。② 国内夏冬两季的气候不舒适地域广阔,包括环渤海、长三角等经济发达、人口稠密地区,避暑型与避寒型气候资源的开发潜力显著。③ 两类宜人气候呈现明显的地域分离特征,拥有避暑和避寒双重属性的地方极少。④ 国内避寒型气候是稀缺资源,具有垄断性特征;而避暑型气候相对分布广泛,是一种相对遍在性资源。本文不仅丰富了宜人气候分布特征研究的理论成果,而且可为地方气候资源的旅游开发提供科学依据。  相似文献   
52.
Rockwall slope erosion is defined for the upper Bhagirathi catchment using cosmogenic Beryllium-10 (10Be) concentrations in sediment from medial moraines on Gangotri glacier. Beryllium-10 concentrations range from 1.1 ± 0.2 to 2.7 ± 0.3 × 104 at/g SiO2, yielding rockwall slope erosion rates from 2.4 ± 0.4 to 6.9 ± 1.9 mm/a. Slope erosion rates are likely to have varied over space and time and responded to shifts in climate, geomorphic and/or tectonic regime throughout the late Quaternary. Geomorphic and sedimentological analyses confirm that the moraines are predominately composed of rockfall and avalanche debris mobilized from steep relief rockwall slopes via periglacial weathering processes. The glacial rockwall slope erosion affects sediment flux and storage of snow and ice at the catchment head on diurnal to millennial timescales, and more broadly influences catchment configuration and relief, glacier dynamics and microclimates. The slope erosion rates exceed the averaged catchment-wide and exhumation rates of Bhagirathi and the Garhwal region on geomorphic timescales (103−105 years), supporting the view that erosion at the headwaters can outpace the wider catchment. The 10Be concentrations of medial moraine sediment for the upper Bhagirathi catchment and the catchments of Chhota Shigri in Lahul, northern India and Baltoro glacier in Central Karakoram, Pakistan show a tentative relationship between 10Be concentration and precipitation. As such there is more rapid glacial rockwall slope erosion in the monsoon-influenced Lesser and Greater Himalaya compared to the semi-arid interior of the orogen. Rockwall slope erosion in the three study areas, and more broadly across the northwest Himalaya is likely governed by individual catchment dynamics that vary across space and time. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons, Ltd.  相似文献   
53.
Although the effectiveness of best management practices (BMPs) in reducing urban flooding is widely recognized, the improved sustainability achieved by implementing BMPs in upstream suburban areas, reducing downstream urban floods, is still debated. This study introduces a new definition of urban drainage system (UDS) sustainability, focusing on BMP usage to enhance system performance after adaptation to climate change. Three types of hydraulic reliability index (HRI) plus robustness and improvability indices were used to quantify the potential enhanced sustainability of the system in a changing climate, together with a climate change adaptability index (CCAI). The sustainability of UDS for the safe conveyance of storm-water runoff was investigated under different land-use scenarios: No BMP, BMP in urban areas, and BMP inside and upstream of urban areas, considering climate change impacts. Rainfall–runoff simulation alongside drainage network modelling was conducted using a storm-water management model (US EPA SWMM) to determine the inundation areas for both base-line and future climatic conditions. A new method for disaggregating daily rainfall to hourly, proposed to provide a finer resolution of input rainfall to SWMM, was applied to a semi-urbanized catchment whose upstream runoff from mountainous areas may contribute to the storm-water runoff in downstream urban parts. Our findings confirm an increase in the number of inundation points and reduction in sustainability indices of UDS due to climate change. The results present an increase in UDS reliability from 4% to 16% and improvements in other sustainability indicators using BMPs in upstream suburban areas compared to implementing them in urban areas.  相似文献   
54.
Considerable debate revolves around the relative importance of rock type, tectonics, and climate in creating the architecture of the critical zone. We demonstrate the importance of climate and in particular the rate of water recharge to the subsurface, using numerical models that incorporate hydrologic flowpaths, chemical weathering, and geomorphic rules for soil production and transport. We track alterations in both solid phase (plagioclase to clay) and water chemistry along hydrologic flowpaths that include lateral flow beneath the water table. To isolate the role of recharge, we simulate dry and wet cases and prescribe identical landscape evolution rules. The weathering patterns that develop differ dramatically beneath the resulting parabolic interfluves. In the dry case, incomplete weathering is shallow and surface parallel, whereas in the wet case, intense weathering occurs to depths approximating the base of the bounding channels, well below the water table. Exploration of intermediate cases reveals that the weathering state of the subsurface is strongly governed by the ratio of the rate of advance of the weathering front itself controlled by the water input rate, and the rate of erosion of the landscape. The system transitions between these end‐member behaviours rather abruptly at a weathering front speed ‐ erosion rate ratio of approximately 1. Although there are undoubtedly direct roles for tectonics and rock type in critical zone architecture, and yet more likely feedbacks between these and climate, we show here that differences in hillslope‐scale weathering patterns can be strongly controlled by climate.  相似文献   
55.
The New England and Mid‐Atlantic regions of the Northeast United States have experienced climate‐induced increases in both the magnitude and frequency of floods. However, a detailed understanding of flood seasonality across these regions, and how flood seasonality may have changed over the instrumental record, has not been established. The annual timing of river floods reflects the flood‐generating mechanisms operating in a basin, and many aquatic and riparian organisms are adapted to flood seasonality, as are human uses of river channels and flood plains. Changes in flood seasonality may indicate changes in flood‐generating mechanisms, and their interactions, with important implications for habitats, flood plain infrastructure, and human communities. I applied a probabilistic method for identifying flood seasons at a monthly resolution for 90 Northeast U.S. watersheds with natural, or near‐natural, flood‐generating conditions. Historical trends in flood seasonality were also investigated. Analyses were based on peaks‐over‐threshold flood records that have, on average, 85 years of data and three peaks per year—thus providing more information about flood seasonality than annual maximums. The results show rich detail about annual flood timing across the region with each site having a unique pattern of monthly flood occurrence. However, a much smaller number of dominant seasonal patterns emerged when contiguous flood‐rich months were classified into commonly recognized seasons (e.g., Mar–May, spring). The dominant seasonal patterns identified by manual classification were corroborated by unsupervised classification methods (i.e., cluster analyses). Trend analyses indicated that the annual timing of flood‐rich seasons has generally not shifted over the period of record, but 65 sites with data from 1941 to 2013 revealed increased numbers of June–October floods—a trend driving previously documented increases in Northeast U.S. flood counts per year. These months have been historically flood‐poor at the sites examined, so warm‐season flood potential has increased with possible implications for aquatic and riparian organisms.  相似文献   
56.
The root‐zone moisture replenishment mechanisms are key unknowns required to understand soil hydrological processes and water sources used by plants. Temporal patterns of root‐zone moisture replenishment reflect wetting events that contribute to plant growth and survival and to catchment water yield. In this study, stable oxygen and hydrogen isotopes of twigs and throughfall were continuously monitored to characterize the seasonal variations of the root‐zone moisture replenishment in a native vegetated catchment under Mediterranean climate in South Australia. The two studied hillslopes (the north‐facing slope [NFS] and the south‐facing slope [SFS]) had different environmental conditions with opposite aspects. The twig and throughfall samples were collected every ~20 days over 1 year on both hillslopes. The root‐zone moisture replenishment, defined as percentage of newly replenished root‐zone moisture as a complement to antecedent moisture for plant use, calculated by an isotope balance model, was about zero (±25% for the NFS and ± 15% for the SFS) at the end of the wet season (October), increased to almost 100% (±26% for the NFS and ± 29% for the SFS) after the dry season (April and May), then decreased close to zero (±24% for the NFS and ± 28% for the SFS) in the middle of the following wet season (August). This seasonal pattern of root‐zone moisture replenishment suggests that the very first rainfall events of the wet season were significant for soil moisture replenishment and supported the plants over wet and subsequent dry seasons, and that NFS completed replenishment over a longer time than SFS in the wet season and depleted the root zone moisture quicker in the dry season. The stable oxygen isotope composition of the intraevent samples and twigs further confirms that rain water in the late wet season contributed little to root‐zone moisture. This study highlights the significant role of the very first rain events in the early wet season for ecosystem and provides insights to understanding ecohydrological separation, catchment water yield, and vegetation response to climate changes.  相似文献   
57.
Ensemble modelling was used to assess the robustness of projected impacts of pumped‐storage (PS) operation and climate change on reservoir ice cover. To this end, three one‐dimensional and a two‐dimensional laterally averaged hydrodynamic model were set up. For the latter, the strength of the impacts with increasing distance from the dam was also investigated. Climate change effects were simulated by forcing the models with 150 years of synthetic meteorological time series created with a weather generator based on available air temperature scenarios for Switzerland. Future climate by the end of the 21st century was projected to shorten the ice‐covered period by ~2 months and decrease ice thicknesses by ~13 cm. Under current climate conditions, the ice cover would already be affected by extended PS operation. For example, the average probability of ice coverage on a specific day was projected to decrease by ~13% for current climate and could further be reduced from ~45% to ~10% for future climate. Overall, the results of all models were consistent. Although the number of winters without ice cover was projected to increase for all one‐dimensional models, studying individual segments of the two‐dimensional model showed that the impact was pronounced for segments close to the PS intake/outlet. In summary, the reservoir's ice cover is expected to partially vanish with higher probability of open water conditions closer to the PS intake/outlet.  相似文献   
58.
黄健文 《地震工程学报》2019,41(4):1060-1065
当前新型乡村抗震防灾适宜性规划分析中通常采用地质分区方法对勘测点进行分析,在分析过程中忽略了GIS空间的复杂性,且未对评价指标加权分析,导致抗震适宜性评价指标量化过程过于主观,存在计算结果与实际结果拟合度低的问题。据此,提出基于ANSYS的新型乡村抗震防灾适宜性规划模型分析。考虑到GIS的空间复杂性,采用ANSYS在GIS空间进行有限元结构场修正操作,结合Logistic非线性回归模型,对乡村土地抗震防灾适宜性规划中的二分类变量数据进行非线性回归分析。为了防止计算数值过于主观,采用组合熵系数模型对Logistic方程计算得来的评价指标加权,由此完成基于ANSYS的新型乡村抗震防灾适宜性规划模型分析。经过实例分析证明,所提方法求出的计算结果与实际结果拟合度较高,能成功完成评价指标的量化,对乡村抗震防灾适宜性规划分析更加客观。  相似文献   
59.
太湖蓝藻水华的扩张与驱动因素   总被引:7,自引:6,他引:1  
张民  阳振  史小丽 《湖泊科学》2019,31(2):336-344
蓝藻水华表征指标及驱动因子的多样性增加了研究人员、湖泊管理部门对于蓝藻水华扩张驱动因素的困惑,本研究通过整合太湖蓝藻水华长尺度研究的成果,将蓝藻水华扩张区分为时间扩张、空间扩张和生物量扩张3个方面,分析各自的驱动因子,系统阐述了当下太湖蓝藻水华的扩张和驱动因素.太湖蓝藻水华的时间扩张呈现由夏季集中发生向春季和秋冬季节扩张的趋势,导致春季蓝藻水华发生的提前,以及年度峰值的推迟;空间扩张呈现由西北太湖向湖心和东部湖区、乃至全湖扩张的趋势;太湖蓝藻生物量自2003年以后一直呈现缓慢增加的趋势.蓝藻水华时间扩张的驱动因素相对独立,主要受气象因子的影响,风速和日照时间是主要驱动因子,风速降低和日照时间延长均有助于蓝藻水华时间的扩张;空间扩张和生物量扩张则受气象因子和富营养化的双重影响,其中影响水华空间扩张的因子较多,富营养化和气象因素的主次难以确定,一般偶发性大面积蓝藻水华受气象因子驱动,而频发性大面积蓝藻水华主要受营养盐空间分布影响;影响蓝藻生物量扩张的主要驱动因素为总磷,另外氮磷比、水下可利用光和风速的变化也在一定程度上驱动了太湖蓝藻生物量的扩张.目前表征蓝藻水华强度通常利用空间扩张或生物量扩张指标,但是均具有一定局限性,相互间也缺乏可比性,各指标用于长尺度趋势研究更为可靠,短尺度比较受方法缺陷影响较大,应进一步开发表征水华蓝藻总存量的指标以统一空间扩张和生物量扩张.  相似文献   
60.
2000年以来青藏高原湖泊面积变化与气候要素的响应关系   总被引:1,自引:0,他引:1  
青藏高原星罗密布的湖泊对气候变化十分敏感,在自然界水循环和水平衡中发挥着重要作用.以MODIS MOD09A1和SRTM DEM为数据源,提取了2000-2016年青藏高原丰水期面积大于50 km2的湖泊边界,从内外流分区、湖泊主要补给来源和湖水矿化度三个方面对2000年以来湖泊面积变化进行分析,并结合青藏高原近36年气象数据,根据气象要素变化趋势分区,初步探讨青藏高原湖泊面积变化与气候要素的关系.结果表明:青藏高原面积大于50 km2的138个湖泊整体扩张趋势显著,总面积增加2340.67 km2,增长率为235.52 km2/a.其中,扩张型湖泊占67.39%,萎缩型湖泊占12.32%,稳定型湖泊占20.29%.内流湖扩张趋势显著,外流湖扩张趋势较明显;以冰雪融水为主要补给来源的湖泊整体扩张趋势明显,以地表径流和河流补给为主要补给源的湖泊也呈扩张趋势;盐湖和咸水湖以扩张为主,淡水湖的扩张、萎缩和稳定三种类型较均衡.在青藏高原气候暖湿化方向发展背景下,湖泊面积变化与气候要素具有显著的区域相关性.气温和降水变化趋势分区结果表明,气温增加、降水增加强趋势的高原Ⅰ区湖泊扩张程度(78.18%)依次大于气温降低、降水量呈增加趋势的Ⅴ区(66.67%),气温、降水量呈增加趋势的Ⅱ区(60.78%),气温呈降低、降水量呈增加强趋势的Ⅳ区(58.83%)和气温呈增加、降水量呈减少趋势的Ⅲ区(50.00%).湖泊面积变化对气候变化响应研究表明,升温引起的冰雪融水补给对Ⅰ区、Ⅱ区和Ⅲ区湖泊面积扩张的影响显著,加之降水量的增加,湖泊扩张速率明显;Ⅳ区和Ⅴ区湖泊面积扩张主要受降水量增加影响显著.整体而言,气温主要影响以冰雪融水为主要补给来源的湖泊,降水量主要影响以降水和地表径流为主要补给来源的湖泊.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号